If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+5t-13=0
a = 2; b = 5; c = -13;
Δ = b2-4ac
Δ = 52-4·2·(-13)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{129}}{2*2}=\frac{-5-\sqrt{129}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{129}}{2*2}=\frac{-5+\sqrt{129}}{4} $
| (35+x)/2-20=2 | | (35-x)/2-20=2 | | 9-5z=25 | | x/3+6=−5 | | 4(2m+7)=40 | | 3(4-2m)=4m+20 | | 2x+350=360 | | 2m=4m+8 | | X^2+13/3=-4x | | 7/8m=21/1 | | (x+2)/3+4=x-2 | | 150-x=8 | | 4x+2+3x=5x+38 | | (5x-2)(2x+3)=-3 | | 4k+2=k+11 | | 5x+2x=7x+140 | | x^2+2x^2+4x^2=343 | | 5(v+2)+3(v+5=1 | | 4/25t=725 | | 4/25t=$725 | | -7/8=-2/7r | | -3x+7=2x-23 | | 9/7+y=6/7 | | 5x+7x+6x=180 | | X+(3x+3)=58 | | 150+x/17.5=18 | | 2y+5=3y-13 | | -41-2n=4+6n | | -9-9v=4v+59 | | 7z+10=3z-42 | | 3w+5=6w+41 | | 6y+12=5y-15 |